Retinal regeneration in the Xenopus laevis tadpole: a new model system

نویسندگان

  • M. Natalia Vergara
  • Katia Del Rio-Tsonis
چکیده

PURPOSE Retinal regeneration research holds potential for providing new avenues for the treatment of degenerative diseases of the retina. Various animal models have been used to study retinal regeneration over the years, providing insights into different aspects of this process. However the mechanisms that drive this important phenomenon remain to be fully elucidated. In the present study, we introduce and characterize a new model system for retinal regeneration research that uses the tadpole of the African clawed frog, Xenopus laevis. METHODS The neural retina was surgically removed from Xenopus laevis tadpoles at stages 51-54, and a heparin-coated bead soaked in fibroblast growth factor 2 (FGF-2) was introduced in the eyes to induce regeneration. Histological and immunohistochemical analyses as well as DiI tracing were performed to characterize the regenerate. A similar surgical approach but with concomitant removal of the anterior portion of the eye was used to assess the capacity of the retinal pigmented epithelium (RPE) to regenerate a retina. Immunohistochemistry for FGF receptors 1 and 2 and phosphorylated extracellular signal-regulated protein kinase (pERK) was performed to start elucidating the intracellular mechanisms involved in this process. The role of the mitogen activated protein kinase (MAPK) pathway was confirmed through a pharmacological approach using the MAPK kinase (MEK) inhibitor U0126. RESULTS We observed that Xenopus laevis tadpoles were able to regenerate a neural retina upon induction with FGF-2 in vivo. The regenerated tissue has the characteristics of a differentiated retina, as assessed by the presence and distribution of different retinal cell markers, and DiI tracing indicated that it is able to form an optic nerve. We also showed that retinal regeneration in this system could take place independently of the presence of the anterior eye tissues. Finally, we demonstrated that FGF-2 treatment induces ERK phosphorylation in the pigmented epithelia 10 days after retinectomy, and that inhibition of the MAPK pathway significantly decreases the amount of retina regenerated at 30 days post-operation. CONCLUSIONS Regeneration of a complete neural retina can be achieved in larval Xenopus laevis through activation of the MAPK signaling pathway by administering exogenous FGF-2. This mechanism is conserved in other animal models, which can regenerate their retina via pigmented epithelium transdifferentiation. Our results provide an alternative approach to retinal regeneration studies, capitalizing on the advantages of the Xenopus laevis tadpole as a model system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cone degeneration following rod ablation in a reversible model of retinal degeneration.

PURPOSE Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reve...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

A comparative study of amphibian retinal regeneration by tissue culture technology

Amphibian retinal regeneration has been intensely studied, using the urodele as a model organism. Transdifferentiation of retinal pigment epithelium (RPE) into retinal stem cells play a crucial role in regeneration. Recently, it was found that anurans (Xenopus laevis) in the adult stage also can regenerate the retina similarly to the newt. This provides a new tool of a model for the molecular m...

متن کامل

Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.

In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neura...

متن کامل

Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis

Recently, the accessory limb model (ALM) has become an alternative study system for limb regeneration studies in axolotls instead of using an amputated limb. ALM progresses limb regeneration study in axolotls because of its advantages. To apply and/or to compare knowledge in axolotl ALM studies to other vertebrates is a conceivable next step. First, Xenopus laevis, an anuran amphibian, was inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Vision

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2009